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Abstract

Obstructive Sleep Apnea Syndrome (OSAS) and Major
Depressive Disorder (MDD) are both common conditions
associated with poor quality of life. We seek to classify
OSAS and depression in OSAS patients, as well as sleep
stages using multiple machine learning techniques. We
have extracted features from 5-minute intervals of elec-
trocardiograms (ECG), breathing signals, and electroen-
cephalograms (EEG) recorded from a total of 118 sub-
jects, of which 89 are used for training and 10-fold cross-
validation and 29 are used for testing or a 75/25% split.
The best classification performance of OSAS was obtained
with light sleep and deep sleep with ReliefF using random
forest and boosted trees, respectively. It has yielded an
accuracy of 100.00%, F1-Score of 100.00%, Cohen’s κ
Coefficient of 1.00, and a Matthews correlation coefficient
(MCC) of 1.00. All sleep stages with 10 principal compo-
nents using random forest yielded an accuracy of 77.50%,
F1-Score of 78.05%, Cohen’s κ of 0.571, and an MCC
of 0.632 for classification of depression in OSAS patients.
Sleep staging was best done using bagged trees with fea-
tures selected via sequential backward feature selection,
yielding an accuracy of 76.90%, F1-Score of 75.90%, Co-
hen’s κ of 0.480, and an MCC of 0.634. These results show
promise in detecting OSAS and depression in OSAS pa-
tients, particularly using light and deep sleep data.

1. Introduction

Obstructive Sleep Apnea Syndrome (OSAS) is a preva-
lent condition with 3-7% of men and 2-5% of women in the
general population [1] suffering from it with an associated
decrease in sleep quality and overall quality of life, due to
its many comorbidities. These include strokes, coronary
heart disease (CHD), mood disorders, memory loss, and
reduced cognitive performance [2–4]. Electrocardiogra-
phy (ECG) is among the most common electrophysiolog-
ical signal recording techniques due to the importance of
reading heart signals for countless applications and tests,
and as such, it is also commonly recorded in sleep studies,

or polysomnography (PSG), often for use with machine
learning algorithms.

Works like Khandoker et al.’s, Bozkurt et al.’s and Er-
denebayar et al.’s focus on the use of support vector ma-
chines (SVMs), multiple classic classifiers, and convolu-
tional and recurrent neural networks (CNNs and RNNs),
respectively [4–6]. The first of which obtained a testing
accuracy of 92.85% and a Cohen’s κ coefficient of 0.85
with 83 out of 125 subjects after training SVMs with heart
rate variability (HRV) and ECG-derived respiration (EDR)
features and leave-one-out cross-validation [4]. Bozkurt et
al. derived HRV and QRS intervals from 10 ECGs, and
in turn, extracted features and performed feature selection
using Fisher’s algorithm. An ensemble of decision trees
(DT), Kth-nearest neighbor (KNN), and SVM and 50% of
the features selected, yielded the best performance with
an accuracy of 85.12%, sensitivity of 85.00% and speci-
ficity of 86.00% [5]. Finally, Erdenebayar et al. use gated
recurrent unit (GRU) neural networks, which are a type
of long short-term memory (LSTM) recurrent neural net-
works (RNN) with 80% of 86 subjects used for training
and the remainder for testing, to classification accuracy
and sensitivity of 99.00% [6].

Works regarding the detection of OSAS and depression
are somewhat rare, though machine learning is a relatively
standard methodology for detecting these individual con-
ditions. Furthermore, the discussed works commonly ex-
tensively pre-process data in order to have robust features
for machine learning. Hence, the contribution of this work
centers around the idea of using features extracted from
5-minute intervals from the ECG, EEG, and breathing sig-
nals following filtering and re-sampling as necessary, se-
lecting features among these using various algorithms. Af-
terward, we use these features to train machine learning
algorithms to perform sleep staging, classify OSAS, and
classify depression in OSAS patients.

We describe the methodology utilized in Section 2 and
the results obtained from following said methodology in
Section 3, we discuss our results in Section 4. Finally,
we end with concluding remarks and possible avenues for
future work in Section 5.
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2. Methodology

Overnight polysomnography was performed on 86 sub-
jects at the American Center for Psychiatry and Neurology,
among which 40 had OSAS alone, 40 had OSAS paired
with depression. In addition, 32 subjects without OSAS
or depression are taken from the Stanford Technology An-
alytics and Genomics in Sleep (STAGES) dataset [7] to
form a total of 118 subject-dataset with 59 male and 57
female subjects, of which 89 or 75% are used for training
and 10-fold cross-validation and the remaining 29 or 25%
are used for testing.

We mainly focus on ECG, EEG, and breathing signals
(flow and thorax signals), the first two were sampled at
100 Hz and 200 Hz, respectively, and were re-sampled to
breathing signals’ sampling frequency, 10 Hz, to synchro-
nize the signals in time prior to feature extraction. Power-
line interference is filtered out of the electrophysiological
signals via a 50 Hz notch filter, followed by band-pass fil-
tering as appropriate before re-sampling. Finally, the sig-
nals are split into 5-minute intervals, from which features
are extracted based on the status of depression, apnea, and
sleep stage during that interval, with depression being de-
pendent on the subject themselves, rather than the interval.

Classification of OSAS and classification of depression
in OSAS patients are done both with all data, and the data
for each individual sleep stage, while sleep staging is log-
ically only done with all data. Since we begin by classify-
ing whether or not the subjects have OSAS using subjects
with OSAS regardless of depression status vs the control
group, the control group is removed afterward when we
seek to classify depression. This means that the number of
intervals or observations available for the classification of
depression is less than the number of observations avail-
able for detection of OSAS and sleep staging (with all data
only). Consequently, the selected features for the classifi-
cation of depression would also differ from those selected
for the classification of OSAS and for sleep staging.

The features extracted include respiratory frequency ex-
tracted from breathing signals, and brain wave powers
extracted from EEG channels O1, O2, C3, C4, F3, and
F4 with A1 and A2 (or M1 and M2) as reference chan-
nels. Furthermore, very low-frequency, low-frequency,
and high-frequency powers, as well as the ratio of low-to-
high-frequency powers of ECG signals or heart rate vari-
ability signals, and features pertaining to both ECG and
breathing were extracted such as lambda, which repre-
sents the phase coupling between R-R intervals in the ECG
and thorax signal, and respiratory sinus arrhythmia (RSA),
which represents the reduction in R-R interval duration
during inspiration and extension during expiration. The
resultant features are thus lambda, RSA, respiratory fre-
quency, normalized RSA, vLF power, LF power, normal-
ized LF power, HF power, normalized HF power, LF/HF,

and the band powers of beta, theta, alpha, and delta from
each of the 6 EEG channels aside from the reference ones
for a total of 34 features.

No further processing is applied to this data, but features
are selected using one of 7 techniques/algorithms: sequen-
tial forward feature selection (SFFS), sequential backward
feature selection (SBFS), minimum redundancy maximum
relevance (MRMR), ReliefF [8], neighborhood component
analysis (NCA), Chi-Squared, principal component analy-
sis taking the first 10 components, and principal compo-
nent analysis taking components that explain 95% of the
variance.

After feature selection, the data is ready to be input into
our classifiers. We essentially have two sets of problems,
the first set involves three problems: sleep staging, done in
parallel with the classification of OSAS, and classification
of depression in OSAS patients. The second set involves
the latter two problems performed with data from each in-
dividual sleep stage. This means we have, overall, three
classification problems, the first of which is 3-class due
to the way sleep stages were denoted (light sleep, REM
sleep, and deep sleep were considered; light sleep is not
split into two stages), and the second and third are binary.
We end up using up to 14 classifiers including Gaussian
Distribution Naive Bayes (NB), linear discriminant analy-
sis (LDA) with a regularization term γ of 0, decision tree
(DC) with 100 maximum number of branch nodes split by
Gini’s diversity index (GDI), Euclidean distance kth near-
est neighbor (KNN) with k set to 1, radial basis function
(RBF) support vector machine (SVM) with automatically
computed kernel scale and a box constraint of 1, bagged
trees with 1290 maximum number of branch nodes and
30 learning cycles, random forest (RF), boosted trees with
4 algorithms (AdaBoost, RUSBoost, LogitBoost, Gentle-
Boost) and a maximum number of branch nodes of 30, sub-
space KNN and discriminant with 30 learning cycles, and
a 4-layer artificial neural network (ANN), wherein there
are an input and output layers and two hidden layers with
100 units in each.

3. Results

In order to measure the performance of our classifiers,
we use several well-known metrics in machine learning,
namely accuracy, sensitivity (also known as recall), speci-
ficity, precision, F1-score, Cohen’s Kappa (κ) coefficient,
Matthews correlation coefficient (MCC), and the area un-
der the receiver operating characteristics (ROC) curve, also
known as AUC. These metrics are described in Equations 1
through 7, where TP, FP, FN, and TN are true positive,
false positive, false negative, and true negative instances
and the expected accuracy is the accuracy when the in-
stances are classified by chance, based on the number of
classes and number of instances in each class.
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Accuracy =
TP + TN

TP + FP + FN + TN
(1)

Sensitivity =
TP

TP + FN
(2)

Specificity =
TN

FP + TN
(3)

Precision =
TP

TP + FP
(4)

F1 − Score =
2 ∗ Precision ∗ Sensitivity

Precision + Sensitivity
(5)

κ =
Accuracy − ExpectedAccuracy

1 − ExpectedAccuracy
(6)

MCC =
(TP ∗ TN) − (FP ∗ FN)√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(7)

Sleep Staging is best done with SBFS using bagged trees
for classification with an AUC of 0.846, an accuracy of
76.90%, sensitivity of 75.38%, specificity of 87.04%, pre-
cision of 77.03%, F1-score of 75.90%, Cohen’s κ of 0.480,
and a Matthews correlation coefficient of 0.634. OSAS is
best classified with ReliefF using light and deep sleep data,
using random forest and boosted trees with GentleBoost al-
gorithm, respectively for classification. These algorithms
with their respective data and feature selection techniques
yielded an AUC, Cohen’s kappa, and Matthews correla-
tion coefficient of 1.00, as well as accuracy, sensitivity,
specificity, precision, and F1-score of 100%. Depression
in OSAS patients is best classified with PCA taking the
first 10 PCs using deep sleep data, using a random for-
est for classification with an AUC of 0.880, an accuracy
of 77.50%, sensitivity of 64.00%, specificity of 100.00%,
precision of 100.00%, F1-score of 78.05%, Cohen’s κ of
0.571, and a Matthews correlation coefficient of 0.632.
These results are summed up in Table 1, and Figure 1 pro-
vides a visual representation in the form of posterior prob-
ability and box plots.

Table 1. Best classification results for each problem.

Sleep
Staging

Classification
of

OSAS

Classification
of

Depression
in OSAS Patients

Sleep
Stage

N/A or All
Stages

Light
Sleep

Deep
Sleep

Deep
Sleep

Feature
Selection

Technique
SBFS ReliefF ReliefF PCA-10 PCs

Model Bagged
Trees

Random
Forest

GentleBoost
Boosted

Trees

Random
Forest

AUC 0.846 1.00 1.00 0.880
Accuracy (%) 76.90 100.00 100.00 77.50
Sensitivity (%) 75.38 100.00 100.00 64.00
Specificity (%) 87.04 100.00 100.00 100.00
Precision (%) 77.03 100.00 100.00 100.00
F1-Score (%) 75.90 100.00 100.00 78.05

κ 0.480 1.00 1.00 0.571
MCC 0.634 1.00 1.00 0.632

4. Discussion

The computed metrics in Table 1 show excellent per-
formance for classification of OSAS with these datasets
and methodology, as well as decent performance for sleep
staging and classification of depression in OSAS patients.
Deep sleep seems to be the common denominator in the
best classification performance for both OSAS and depres-
sion in OSAS patients, allowing us to recommend record-
ing polysomnography signals during deep sleep. Since
our classification of OSAS and depression using all sleep
stage data was done in parallel with sleep staging, we
refrain from making hard recommendations for automa-
tion of sleep staging before moving on to classification of
OSAS and depression since its classification performance
can likely be improved with further processing of the sig-
nals or more advanced classification techniques. More-
over, note that the performance using REM sleep data for
classification does not appear in our table, which indicates
that increased brain activity may be a slight hindrance for
all three classification problems when using ECG, EEG,
and breathing signals, perhaps because 24 out of the ini-
tial 34 features are extracted from the EEG. In addition,
the results obtained for OSAS and depression classifica-
tion using all sleep stage data compared to individual sleep
stages is slightly worse, so we recommend clinically or
mathematically defining sleep stages prior to classification
of OSAS and depression in OSAS patients. We also no-
tice that decision tree ensemble classifiers, namely bagged
trees, boosted trees, and random forest yield the best per-
formance in all three classification problems, meaning we
could forgo other ML algorithms.

Future directions in this research should include per-
forming classification using deep learning with the PSG
signals directly without manual feature extraction, which
allows better automated analysis of PSG data, or simply
further processing of the signals or features. Addition-
ally, interpretability measures like Shapley additive expla-
nations (SHAP) can be computed to more accurately ana-
lyze feature importance.

5. Conclusion

To wrap up, the main goal of our work is to classify
OSAS, and depression in OSAS patients using 14 differ-
ent machine learning and deep learning techniques from
ECG, EEG, and breathing signals extracted from overnight
polysomnography (PSG) recorded 118 subjects, using the
data of 89 for training and 10-fold cross-validation and 29
for testing. Best sleep staging performance was obtained
using bagged trees with features selected using sequential
backward forward selection, with an accuracy of 76.90%,
an F1-score of 75.90%, a κ of 0.480 and a MCC of 0.634.
However, intervals of deep sleep yielded the best results for
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Figure 1. A) Posterior probability of the best staging configuration. B) Posterior probability of one of the two best OSAS
classification configurations (deep sleep, reliefF, GentleBoost). C) Posterior probability of the best depression with OSAS
classification configuration.

classification of OSAS and depression in OSAS patients,
with an accuracy of 100.0%, an F1-score of 100.0%, a κ
of 1.00, and an MCC of 1.00 with features selected us-
ing the ReliefF algorithm for OSAS using boosted trees
with the GentleBoost algorithm, and principal component
analysis taking the first 10 principal components and us-
ing random forest to classify depression in OSAS patients
yielded an accuracy of 77.50%, an F1-score of 78.05%, a
κ of 0.571 and an MCC of 0.632, respectively. Light sleep
data with ReliefF and random forest for OSAS classifica-
tion also yielded the same performance.
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